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Synopsis 

The equilibrium swelling behavior of heterogeneous systems consisting of a continuous network 
phase and a dispersed lamellar, spherical, or cylindrical phase is described using a thermodynamic 
model. The case of swelling of both phases but to different extents is described. The equilibrium 
volume fractions of each phase as well as the stresses at equilibrium are predicted as functions of 
the polymer interaction parameter, X, the modulus, G, and the geometric character of the networks. 

INTRODUCTION 

Equilibrium-swollen crosslinked polymeric systems, otherwise known as 
gels, have become materials of utmost importance in biomedical and high 
technology applications. Knowledge of their swelling characteristics at equilib- 
rium in relation to their structure is important when one studies the permeation 
properties. In recent years there have been significant efforts to develop new 
models for the description of the equilibrium swelling behavior of such  system^.^,^ 

The swelling and elastic behavior of homogeneous, polymeric networks was 
originally addressed by Huggins5s6 and Flory and Rehner.7-10 The free energy 
of a crosslinked polymer (network), swollen to equilibrium was found to be a 
balance of the networks' compatibility with a solvent, and the retractive con- 
tribution from rubberlike elasticity as expressed by its corresponding partial 
molar Gibbs free energies. 

Equilibrium swelling analysis of multiphase heterogeneous polymer networks 
utilizes some of the concepts used for the development of similar expressions 
for homogeneous polymer networks. These heterogeneous networks may be 
treated as quasi-homogeneous systems, with constraints arising from the contact 
between two dissimilar materials at their interfacial boundaries as well as phys- 
ical constraints on the macromolecules within each network phase."-'* The 
macroscopic constraints may include: ( i )  the conformation and relative ge- 
ometries of the polymer domains; (ii) swellling dimensionality; and (iii) external 
constraints. Thus, it is necessary to reformulate the thermodynamic models 
for homogeneous polymer networks in order to account for these effects. 

Three types of domains commonly found in heterogeneous two-phase polymer 
networks, are spherical, cylindrical, and lamellar structures. Each phase is 
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composed of a unique polymer which may or may not swell when exposed to 
an appropriate liquid. Polymer systems which exhibit two-phase behavior may 
include: ( i )  block or graft copolymers; (ii) bonded elastomers; or (iii) uncross- 
linked polymer domains in a crosslinked, elastic continuous phase. Heteroge- 
neous networks, such as block and graft copolymer networks, exhibit phase 
separation on a microscopic level. This phase separation leads to formation of 
microdomain structures. 

In the work presented here, a two-phase system of homogeneous polymers 
in contact with each other a sharp discontinuous phase boundary is considered. 
If a diffuse boundary exists, the theory developed below is easily modified to 
account for a third phase-the transition region between the bulk portion of 
the homogeneous polymer phases. 

SWELLING OF HETEROGENEOUS NETWORK SYSTEMS 

Definition of Problem 

There are three possible cases of heterogeneous network systems of the type 
considered above. In the first case, the dispersed phase does not swell in the 
solvent. The second case involves a network where the continuous or most 
abundant phase does not swell in the presence of solvent. The prediction of 
system parameters, such as the equilibrium polymer volume fraction and 
stresses, in the latter case, may be calculated using an inverse approach to that 
discussed by Klier and Peppas.I5 In the case where the dispersed or less abundant 
phase does not swell, Treloar l6 and Klier and Peppas l5 have presented models 
that fully describe swellable two-phase systems where the core or inner phase 
restricts the swelling behavior of the surrounding phase. Two-phase swellable 
block and graft copolymers where one of the phases does not swell in the pres- 
ence of solvent may also be described in this manner. The third case involves 
systems in which both phases may swell, albeit to different extents. A devel- 
opment for spherical, cylindrical, and planar geometries for this case is pre- 
sented here. 

Deformations in swellable networks may be measured using the extension 
ratios, Xi, the ratio of the length of the deformed sample along the i th  principle 
axis to the length of the undeformed sample along the i th  principle a ~ i s . ' ~ - ~ '  
The work required to produce a deformation is expressed as: 

w = 2 W ( X i )  
i 

where w (X i )  are the component work functions specific to each of the i prin- 
ciple axes. 

Treloar21 has shown that the resultant stress, ui, along the i th  axis in a 
swollen material is 

where ui is the force per unit area along the i th principle axis of the deformed 
material, w'( Xi)  is the first derivative of the i th  component of the work function 
with respect to Xi, p is an arbitrary isotropic force applied on the system, X i  are 
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the extension ratios defined with respect to the unswollen, unstrained network 
and upp is the equilibrium swollen polymer volume fraction. 

To express equilibrium conditions of a network in the swollen state, the 
force balances for two-phase, swellable, spherical, cylindrical, and planar sys- 
tems are solved by applying appropriate boundary conditions and specifying a 
constitutive equation for the stress-strain relationship. In all geometries the 
boundary condition at the polymer/solvent interface is set so that forces normal 
to the surface be constant. For simplicity the stress at the polymer/solvent 
interface is set equal to zero. However, for application purposes, the reader 
may consider the use of the surface tension of a solvent with a polymer surface 
as this constant. 

Planar Geometrical Analysis 

Consider the deformation of a two-phase polymer network in the slab ge- 
ometry swollen to equilibrium conditions. The x ,  y, and z axes are identified 
by the subscripts 1,2,  and 3, respectively in the generalized coordinates, {i, and 
swelling is allowed only in the x direction. 

The extension ratios along each of the principle axes are written as follows 

In a system limited to deformations in only the x direction, 

The term {i is the position along the i principle axis of the swollen network, 
and is the corresponding position of the unswollen (dry) network. 

I SPHERES ) 

" t  

Fig. 1. Spherical microdomain structure of two-phase heterogeneous networks in the dry and 
equilibrium swollen states. 
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Spherical Analysis 

For spherical systems Figure 1 shows the equilibrium swollen condition where 
the r ,  6, and 4 directions are identified by the subscripts 1,2, and 3, respectively. 
The force balance for this type of system has been derived by Rivlin.22 

Geometric constraints were considered to evaluate the extension ratios along 
each of the three principle directions using the extension ratios X1, X2 and AS. 

where 

dr 
A1 = dr’ 

r d6 r 
r’d0’ r’ 

- - - = -  
2 -  

r sin 0 d 4  - r 
r sin 6 d 4  r’ 

X3 = 7-7 - - 

T3 
r;s” = 3 r2u(r)2,sdr 

(7 )  

In the set of equations above, rg is the outer radial position of the swollen 
polymer, and rb is the corresponding radius of the unswollen network. Similarly, 
r and r’ are the radial positions in the swollen and corresponding unswollen 
networks, respectively, for an arbitrary point in the polymer network. 
The extension ratios in the 6 and 4 direction are equal, resulting in the 
condition 

For a two-phase system where the inner and outer phases are denoted by A 
and B respectively, eq. ( 9 )  simplifies to 

( r b ) 3  = 3 r2u2,,(r)dr + 3 r 2 ~ ~ , ~ ( r ) d r  J: 
Equations ( 6 )  through (8) are then re-expressed as 

-CErl=-r2=- dr 1 ( r ’ ) 2  1 
1 -  

u2,s u2,s 
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and 

In all cases the distribution of stresses will be uniform within the inner 
core under both compressive and expansion conditions, and the extension 
ratios along all principle axes within the core will be equal. Here, LJ& and 
A? are the polymer volume fraction and extension ratio in the inner 
domain, A. 

Cylindrical Analysis 

For cylindrical systems the force balance derived by Rivlin22 (where the r, 
0, and z directions are identified by the subscripts 1, 2, and 3, respectively) is 

The extension ratios for each of the three principle directions are derived 
with the added geometric constraint that the swelling in the z direction is 
restricted. Therefore, the extension ratios may be written 

dr  
A1 = clr' 

dz A --=I 
dz' 3 -  

where 

( F L ) ~  = 2 ru(r)2,sdr 

Here r is the radial position of interest in the swollen polymer. rB and rL are 
the radii of the swollen and unswollen networks respectively at the solvent/ 
polymer interface. 

The extension ratios may be expressed as 
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The stresses in the r and 0 directions will be identical within the inner core 
under both compressive and expansion conditions. The extension ratios for the 
inner core are written as 

within the core. 

Equilibrium Swelling Model 

The generalized equation of stress proposed by Treloar l6 and Erman l7 is 
used to derive the relationship between stress and swelling. The expression for 
stress, ui, is given as 

Here the first combination of terms on the right-hand side of eq. (23) is the 
contribution due to the elastic free energy of the system, AAmi, is the free 
energy of mixing, Vl is the molar volume of the solvent; nl is the number of 
solvent molecules, and N is the Avogadro number. 

Eq. (23) is used in the force balances to formulate generalized equations for 
the equilibrium swollen polymer volume fraction, u ~ , ~ ,  as a function of position. 
The boundary conditions at the A/B interface are considered, and conservation 
equations for each geometry are developed. 

For the planar systems, eq. (23), leads to the following expression: 

This equation may be used to solve for the equilibrium swollen polymer volume 
fraction, up,*. Coupled with eq. (23), the stresses, u2 and u3, in the other two 
principle directions can also be calculated. For the planar geometry presented, 
the extension ratios in they  and z directions are equal in each phase. 

The A/B interface is now considered in order to formulate the boundary 
conditions used to translate from phase to phase for the solution of problems 
in spherical and cylindrical geometry. Two boundary conditions apply in this 
approach. The first boundary condition is 
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The extension ratios in both phases in the angular directions are equal at  
the A/B interface. The second boundary condition is the continuity of radial 
stress at  the A/B interface. This condition is expressed as 

evaluated at  the polymer /polymer interface. 
To simplify the analysis the outer interface of phase B in the unswollen, 

nondeformed network is normalized to unity for every geometry. The ratio of 
the location of the outer interface of phase A relative to phase B is expressed 
by the parameter H .  

Further analysis is needed to express the force balance in terms of more 
recognizable parameters for spherical systems. By incorporating eq. (23)  in eq. 
( 5) ,  the following extended equation is derived: 

Here, AAmix is the mixing free energy per solvent molecule given by the 
second term in eq. ( 2 3 ) .  Differentiating eq. ( 12)  and substituting in to eq. (28)  
results in the following expression for the gradient of the equilibrium swollen 
polymer volume fraction, u2,s 

where w'( X i )  and w"( Xi) are the first and second derivative of the i th component 
of the work function with respect to the i th extension ratio, respectively. 

Continuity of the 0 extension ratios, X2,  in each phase at  the interface leads 
to the following equation 

Furthermore, the continuity of radial stress at  the A/B interface is written by 
incorporating eqs. ( 3 0 )  and (23)  into eq. (26)  
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Therefore, eq. (31) establishes the criterion to relate conditions on either side 
of the A/B interface. 

The conservation equation for the spherical geometry is derived using 
eq. (9 ) .  

Here r A  and r B  are the radii of the outer interface of phases A and B in 
the equilibrium swollen network, respectively, and rX and rb are the radii 
of the outer interface of phases A and B in the unswollen, nondeformed 
network. 

An analysis similar to the one presented for the spherical system is used for 
cylindrical systems. The following equation was derived in the same manner 
as eq. ( 28) for the spherical system by incorporating eq. (23 ) into eq. ( 15) 

Differentiation of eq. (20)  and substitution into eq. (33) results in an expres- 
sion for the gradient of the equilibrium swollen polymer volume fraction, up+, 
in the cylindrical system 

From continuity of the 0 extension ratios, A2, in each phase at  the interface, 
the following relationship is obtained 

The continuity of radial stress a t  the A/B interface is then written as follows 
by incorporating eqs. (35) and (23) into eq. (26) 

The conservation equation for the cylindrical geometry is written as 
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where the terms have been previously defined. The system is normalized with 
respect to the unswollen, nondeformed network dimension as in the case of the 
spherical networks. 

The following methodology is a summary of the steps applied in order to 
solve the previous equations: 

1. Select a geometry which best describes the system; this geometrical shape 
sets the value of the parameter H in the analysis. 

2. Select the polymers /solvent combination; this selection fixes the param- 
eters required in the work function and thermodynamic expression for 
the free energy of mixing. 

3. Select an arbitrary value for the equilibrium polymer volume fraction in 
the internal phase, v&, where 0 < v& < 1. 

4. Solve for the equilibrium polymer volume fraction in the external phase 
at  the A/B  interface, v&, from the continuity of interfacial stress bound- 
ary condition. 

5. Calculate the equilibrium polymer volume fraction as a function of po- 
sition; i.e., the term ups ([) , from the modified force balance; a finite forward 
difference procedure is used where, at each incremental step, the extension 
ratios along the principle axes are updated. 

6. Apply the polymer conservation equation at each step to determine if an 
additional step is required. 

7. Once the polymer/solvent interface is reached; check the interfacial 
boundary condition to verify if the primary stress a t  the interface is equal 
to the predetermined constant. If this condition holds, the equilibrium 
values of the polymer volume fraction, stresses, extension ratios, and 
gradients of these parameters are the correct ones. If the boundary con- 
dition is not satisfied, return to step three and increment the selection of 
the equilibrium polymer volume fraction in the internal phase, v&, and 
repeat the procedure until a satisfactory solution is reached. 

The models have been developed in a general manner so that they may be 
applied with or without a network theory for polymeric systems. In further 
development, knowledge of the work function and free energy of mixing is 
required. As presented thus far, this knowledge is not required since the infor- 
mation can be acquired from experiments with homogeneous materials. 

In subsequent analysis, well known forms of the work function and mixing 
free energy will be used. The work function may be expressed by the phantom 
network expression23,24 where 

and the derivative term is defined as 

Of course, G is the elastic modulus of the elastomer. 
The free energy of mixing for a polymer/solvent swollen network will be 

expressed using the statistical mean field theory of Flory and Huggins8s9 
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Here nl is the number of solvent molecules, k is Boltzman’s constant and x ~ , ~  
is the solvent /polymer interaction parameter, representing the mixing enthalpy. 
Positive values of xl,z represent an unfavorable change in mixing enthalpy. 
Both x ~ , ~  and uz,s are chosen to approximate conditions of commonly found 
polymer networks reported in the literature. 

DISCUSSION 

Model Predictions 

Solutions of the models presented in the preceding section give values of the 
equilibrium polymer volume fraction as a function of position, ( 5 ) , in a two- 
phase equilibrium swollen polymer network. Knowledge of the equilibrium 
swollen polymer volume fraction enables the stresses throughout the system 
to be computed. 

The equilibrium polymer volume fraction and the stress profiles throughout 
the network are effected by the chemical composition of the polymeric materials 
and the physical arrangement of the network phases. The network parameters 
required for the determination of these quantities include the solvent /poly- 
mer interaction parameter, and the elastic modulus, G ,  of the polymers 
in each phase. In addition, the dimensions of the confined (inner) phase 
influence both the equilibrium swollen polymer volume fraction and stress 
profiles. 

The first case examined is a spherical heterogeneous system with a confined 
phase that swells to a lesser degree than the surrounding phase. The arguments 
presented here are also applicable to cylindrical and planar geometries. The 
distribution of stress causes the equilibrium swollen polymer volume fraction 
near the polymer-polymer interface to be larger than in homogeneously swollen 
systems. The radial stresses in the surrounding phase will be tensile in na- 
ture, while the stresses in the 0 and 4 directions are compressive in nature. 
The radial stress diminishes with increasing radius and approaches the 
boundary condition value at  the outer surface. However, the 0 and 4 stresses 
remain finite at the outer surface since these stresses are a result of the 
constraining nature of the confined phase. In the second case the confined 
phase swells to a larger degree than the surrounding phase. The analysis 
is similar, but the signs on the stresses will be opposite to those discussed 
previously. 

In the following analysis the examples are restricted to the spherical geometry 
due to the excessive number of parameters (five) and of geometries (three) 
involved. However, information from the cylindrical and planar geometric sys- 
tems may be of equal importance. In all cases, the methodology and models 
required have been presented in previous sections of this text. 

Influence of the Elastic Modulus, G 

Mechanical and swelling properties of polymer networks are affected by their 
structure. Network characteristics, such as the number average molecular 
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Fig. 2. Equilibrium polymer volume fraction, ug,, as a function of normalized radial position, 
r,  for a heterogeneous two-phase system. The solvent/polymer interaction parameters are xA = 0.0 
and xB = 0.0. The elastic moduli are GA = 0.05 Nmrn-' and GB = 5.0 Nmm-'. The H-factor is H 
= 0.5. 
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Fig. 3. Equilibrium polymer volume fraction, u2+, as a function of normalized radial position, 
r, for a heterogeneous two-phase system. The solvent/polymer interaction parameters are xA = 0.0 
and Xg = 0.0. The elastic moduli are G A  = 5.0 Nmm-' and C, = 0.05 Nmm-'. The H-factor is H 
= 0.5. 
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weight, M,,; the number average molecular weight between crosslinks, Mc; and 
the number of entangled and complexed chains, influence the type of structure 
formed and the resistance of the network to deformations. Here networks swol- 
len to equilibrium are described by the elastic modulus, G, of the material. The 
elastic modulus is defined as 

where 5' is the cycle rank of the network; k is the Boltzman constant; T is the 
absolute temperature; and V,, is the molar volume of the unswollen, undeformed 
network. 

For networks with tetrafunctional crosslinks, F 1 o 1 - y ~ ~ ~ ~ ~  has shown the cycle 
rank is a function of the number average molecular weight between crosslinks, 
Mc.  The following expression for the elastic modulus, G, results from incor- 
porating the expression for 6 in eq. (41  ) 

In the above equation p is the density of the network in the unswollen state, 
R is the universal gas constant, and M,, is the number average molecular weight 
of the original uncrosslinked polymer. 

Figures 2 and 3 represent two-phase spherical networks swollen to equi- 
librium conditions. The values of the elastic modulus, G ,  used in the calcula- 
tions ranged from 0.05 N/mm2 to 5.0 N/mm2-a common range for 
most polymers. The equilibrium swollen polymer volume fraction, upb, 

is plotted for systems encompassing a range of solvent compatibility, 

0.0 
n 

3 
E 
\ z 

b- 

W 
-0 .5  

vi 
(I) z ; -1.0 
5 
J 

Q 
-4 
p: 

-1.5 
0.0 0.5 1 .o 1.5 2.0 

NORMALIZED RADIAL POSITION. r 

Fig. 4. Radial stress, (rl (Nmm-'), as a function of normalized radial position, r ,  for a heter- 
ogeneous two-phase sphere. The solvent/polymer interaction parameters are XA = 0.0, and Xg 
= 0.0. 
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Radial stress, u1 (Nmm-’), as a function of normalized radial position, r ,  for a het- 
erogeneous two-phase sphere. The solvent/polymer interaction parameters are XA = 0.25, and XB 
= 0.25. The elastic moduli are GA = 0.05 Nmm-’ and GB = 5.0 Nmm-*. The H-factor is H = 0.5. 

Fig. 5. 

and either the inner or outer phase is chosen as the “stiffer” phase in these 
examples. 

The magnitude of stress is greatest in systems with phases that differ widely 
with respect to their network structure and compatibility with the solvent. 

0.0 1.0 2.0 

NORMALIZED RADIAL POSITION,  r 

5! 

9 

Fig. 6. Equilibrium polymer volume fraction, u ’ , ~ ,  as a function of normalized radial position, 
r, for a heterogeneous two-phase sphere. The solvent/polymer interaction parameters are XA = 0.0 
and Xs = 0.5. The elastic moduli are GA = 0.05 Nmm-’ and G B  = 0.05 Nmm-’. The H-factor is H 
= 0.5. 
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Fig. 7. Equilibrium polymer volume fraction, u2,+, as a function of normalized radial position, 
r, for a heterogeneous two-phase sphere. The solvent/polymer interaction parameters are X A  = 0.5 
and XB = 0.0. The elastic moduli are GA = 0.05 Nmm-' and GB = 0.05 Nmm-'. The H-factor is H 
= 0.5. 

Figures 4 and 5 are presented to demonstrate the effect of the elastic modulus 
on the stresses in these systems. 

Influence of Solvent /Polymer Interaction Parameter, 
The solvent /polymer interaction was accounted for using the Flory-Huggins 

theory. In this development the solvent /polymer interaction parameter, 
was used as a measure of the extent of these interactions. Values of X ranged 
from 0.0 to 0.5-commonly reported values for many solvent /polymer systems. 

Figures 6 and 7 represent the equilibrium conditions of a swollen two-phase 
spherical system. The networks with lower ( more favorable) solvent/polymer 
interaction parameters, are swollen to a greater extent. The response of 
the system indicates that as x1,2 decreases the interaction of the solvent with 
the polymer becomes more favorable, causing the polymer concentration, as 
expressed by the v ~ , ~ ,  to decrease. 

Figures 8 and 9 are plots of stresses as a function of position in the two- 
phase polymer networks. The stresses and stress differences are most pro- 
nounced in systems where unlike networks are in contact. Also, as the equi- 
librium swollen polymer volume fraction, v ~ , ~ ,  decreases, the difference 
of the stresses becomes larger due to the larger deformation of the swollen 
polymers. 

Influence of the Parameter H 
The relative size of the inner to outer phases is expressed by the parameter, 

H .  In a system with a small value of H ,  and an inner phase, A, with a high 
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Radial stress, u, (Nmm-') , as a function of normalized radial position, r ,  for a het- 
erogeneous two-phase sphere. The solvent/polymer interaction parameters are XA = 0.0, and XB 
= 0.5. The elastic moduli are GA = 0.05 Nmm-' and GB = 0.05 Nmm-'. The H-factor is H = 0.5. 

Fig. 8. 

polymer volume fraction (low degree of swelling), the equilibrium swollen 
polymer volume fraction in the outer phase, B, will be greater than in homo- 
geneously swollen networks composed of material B. This effect is due to con- 
straints the inner phase places on the outer phase. 

Figure 10 is provided to demonstrate the effect of the parameter, H ,  on the 
two systems. The first system considered consists of two phases that interact 
with the solvent differently, and the second system is composed of two phases 
that vary in structure. The effect of the H-factor on the stresses in both systems 
are shown in Figure 11. 
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Fig. 9. Theta stress, u2(Nmrn-'), as a function of normalized radial position, r ,  for a heter- 
ogeneous two-phase sphere. The solvent/polymer interaction parameters are XA = 0.0 and XB = 0.5. 
The elastic moduli are GA = 0.05 Nmm-' and GB = 0.05 Nmm-*. The H-factor is H = 0.5. 
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Fig. 10. Equilibrium polymer volume fraction, u2,+, as a function of normalized radial position, 
r ,  for a heterogeneous two-phase sphere. The solvent/polymer interaction parameters are XA = 0.25 
and XB = 0.5. The elastic moduli are GA = 0.05 Nmm-' and GB = 0.05 Nmm-'. The H-factors are 
H = 0.5 (curve 1) andO.l (curve 2) .  
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Radial stress, ol(Nmm-*) as a function of normalized radial position, r ,  for a het- 
erogeneous two-phase sphere. The solvent/polymer interaction parameters are XA = 0.25, and xB 
= 0.5. The elastic moduli are G A  = 0.05 Nrnm-' and GB = 0.05 Nmm-'. The H-factors are H = 0.5 
(curve 1) andO.l (curve 2). 

Fig. 11. 
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CONCLUSIONS 

The development of models to predict the concentration of polymer and 
stresses in two-phase heterogeneous networks was shown. A generalized ap- 
proach to the problem was presented to allow extension of the models to practical 
systems. The relationship between stress and equilibrium swelling enabled the 
equilibrium swollen polymer volume fraction profile to be calculated. Variations 
in stress and equilibrium swollen polymer volume fraction with changes in the 
relative radius of the inner phase, solvent-polymer interactions, and elastic 
modulus in each phase was demonstrated. Gradients of stress and equilibrium 
swollen polymer volume fraction resulted from the nonhomogeneity of the sys- 
tem. Since transport and mechanical properties of polymer networks may de- 
pend strongly on degrees of swelling and deformation, the results presented 
above may be used to help describe transport and mechanical properties of 
heterogeneous systems. 

This work was supported in part by a grant from the National Science Foundation. 
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